

Page 1 of 13

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Lab no 03: Password System Prototype
Keypad and Digital-to-Analog Interfaces

The purpose of this Lab is to learn interfaces with a keypad and

the Digital-to-Analog Converter (DAC). To do that, you are

required to build a prototype for a password system using a

keypad. You will use a keypad as input for the password, and the

output will be validated, if the password is correct – the green

LED turns on and if the password is wrong – the red LED and the

buzzer turn on. Then you will learn how to build a simple Digital-

to-Analog Converter (DAC) using a resistor ladder network to

control alarm sound on a speaker.

Parts: -

1. Introduction to the keypad (4x4)

 a) How the keypad works & how to scan them.

 b) Wiring 4 x 3 & 4 x 4 keypad with Arduino.

 c) Installing Keypad Library.

 d) Code for 4 x 4 keypad.

2. Password System prototype.

3. DAC with resistor ladder network.

Page 2 of 13

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Part 1. Introduction to the keypad (4x4)

The 4*4 matrix keypad usually is used as input in a project. It has
16 keys in total, which means the same input values.

The 4*4 Matrix Keypad Module is a matrix non-encoded keypad
consisting of 16 keys in parallel. The keys of each row and
column are connected through the pins outside – pin Y1-Y4 as
labeled beside control the rows, when X1-X4, the columns.

Page 3 of 13

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Part 1. a) How keypad works & how to scan them

The working principle is very simple. Pressing a button short one
of the row lines to one of the column lines, allows current to flow
between them. For example, when key ‘4’ is pressed, column 1
and row 2 are shorted.

A microcontroller can scan these lines for a button-pressed state.

To do this, it follows the below procedure.

1. Microcontroller sets all the column and row lines to input.

2. Then, it picks a row and sets it HIGH.

3. After that, it checks the column lines one at a time.

4. If the column connection stays LOW, the button on the row
has not been pressed.

5. If it goes HIGH, the microcontroller knows which row was
set HIGH, and which column was detected HIGH when
checked.

6. Finally, it knows which button was pressed that corresponds
to the detected row & column.

Page 4 of 13

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Part 1. b) Wiring 4x3 & 4x4 Membrane keypad with Arduino.

The connections are pretty straightforward. Start by connecting

pin 1 of the keypad to digital pin 9 on Arduino. Now keep on

connecting the pins leftwards like 2 with 8, 3 with 7, etc.

Part 1. c) Installing Keypad Library

In order to determine which key was pressed, we need to

continuously scan rows & columns. Fortunately, Keypad.h was

written to hide away this unnecessary complexity so that we can

issue simple commands to know which key was pressed.

To install the library, navigate to the Sketch > Include Library >

Manage Libraries…Wait for the Library Manager to download the

libraries index and update the list of installed libraries.

Filter your search by typing ‘keypad’. There should be a couple

entries. Look for Keypad by Mark Stanley, Alexander Brevig.

https://playground.arduino.cc/code/keypad

Page 5 of 13

Faculty of Computers and Artificial Intelligence

 Embedded Systems

You have to scroll a little bit. Click on that entry, and then select

Install

Page 6 of 13

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Part 1. d) Code for 4 x 4 keypad

#include <Keypad.h>

const byte ROWS = 4; //four rows

const byte COLS = 4; //four columns

char keys[ROWS][COLS] = {

 {'1','2','3','A'},

 {'4','5','6','B'},

 {'7','8','9','C'},

 {'*','0','#','D'}

};

byte rowPins[ROWS] = {9, 8, 7, 6}; //connect to the row pinouts of the

keypad

byte colPins[COLS] = {5, 4, 3, 2}; //connect to the column pinouts of the

keypad

//Create an object of keypad

Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);

void setup(){

 Serial.begin(9600);

}

void loop(){

 char key = keypad.getKey();// Read the key

 // Print if key pressed

 if (key){

 Serial.print("Key Pressed : ");

 Serial.println(key);

 }

}

Page 7 of 13

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Page 8 of 13

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Part 2. Password System prototype

#include <Keypad.h>

int buzzer = 13;

int red = 6;

int green = 7;

const int ROW_NUM = 4; //four rows

const int COLUMN_NUM = 4; //four columns

char keys[ROW_NUM][COLUMN_NUM] = {

 {'1','2','3', 'A'},

 {'4','5','6', 'B'},

 {'7','8','9', 'C'},

 {'*','0','#', 'D'}

};

Page 9 of 13

Faculty of Computers and Artificial Intelligence

 Embedded Systems

byte pin_rows[ROW_NUM] = {9, 10, 11, 12}; //connect to the row pinouts of

the keypad

byte pin_column[COLUMN_NUM] = {5, 4, 3, 2}; //connect to the column pinouts

of the keypad

Keypad keypad = Keypad(makeKeymap(keys), pin_rows, pin_column, ROW_NUM,

COLUMN_NUM);

const String password = "1234"; // change your password here

String input_password;

void setup(){

 Serial.begin(9600);

 pinMode(buzzer, OUTPUT);

 pinMode(green, OUTPUT);

 pinMode(red, OUTPUT);

 input_password.reserve(32); // maximum input characters is 33, change if

needed

}

void loop(){

 char key = keypad.getKey();

 if (key){

 Serial.println(key);

 if(key == '*') {

 input_password = ""; // clear input password

 digitalWrite(green,LOW);

 digitalWrite(red,LOW);

 digitalWrite(buzzer,LOW);

 } else if(key == '#') {

 if(password == input_password) {

 Serial.println("password is correct");

 digitalWrite(green,HIGH);

 // DO YOUR WORK HERE

Page 10 of 13

Faculty of Computers and Artificial Intelligence

 Embedded Systems

 } else {

 Serial.println("password is incorrect, try again");

 digitalWrite(buzzer,HIGH);

 digitalWrite(red,HIGH);

 }

 input_password = ""; // clear input password

 } else {

 input_password += key; // append new character to input password

string

 }

 }

}

▪ Run above code

▪ Open Serial Monitor

▪ Press “123456” keys and press “#”

▪ Press “1234” keys and press “#”

▪ See the result on Serial Monitor

Page 11 of 13

Faculty of Computers and Artificial Intelligence

 Embedded Systems

Part3. DAC with ladder resistance

• Creating a digital to analog converter (DAC) 8-bit using
resistor ladder (R-2R Ladder) and implemented it in Arduino
Uno to create signals

• The number of levels are equal to two power the number of
bits. In this project, 8 bits means there will be 256 levels. We
can calculate the maximum voltage output by this equation.

• and the voltage output equation for R-2R DAC itself is this:

• In our project here, we made an 8-bit R-2R Ladder DAC, so n
equals to 8 and the output voltage can be calculated as

Page 12 of 13

Faculty of Computers and Artificial Intelligence

 Embedded Systems

// DAC R-2R Ladder 8 bit tutorials and schematic

void setup()

{

 Serial.begin(9600);

 DDRD = B11111111; // Port D at Arduino Uno (pin 0-7)

}

void loop()

{

 for (int i = 0; i < 256; i++) {

/* looping the value of i from 0 to 255, creating a ramp wave from 0 to

255, it's more like stairs wave */

 PORTD = i;

/* the integer value of i is automatically translated to binary and assign

to port D, ex 3 is automatically transformed into 00000011 which means only

pin 0 and pin 1 is high (1) and the other pin is low (0)*/

 delay(10); // set the delay of the analog value

 Serial.println(analogRead(A0));

Page 13 of 13

Faculty of Computers and Artificial Intelligence

 Embedded Systems

/*read the output of the DAC, translated into digital again by the ADC in

analog read arduino, but we can see the plot using serial plotter without

an oscilloscope. But oscilloscope has the best image to show than serial

plotter ADC Arduino Uno*/

 }

}

